
62 3 

Continuum equations in the dynamics of rarefied gases 
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(Received 16 April 1959) 

A procedure is given for translating boundary-value problems of gas dynamics 
from microscopic form into approximately equivalent continuum form. The 
continuum formulations involve state-variables that are either half-space 
moments, or complete moments of the molecular distribution functions. Moment 
equations derived from the kinetic equations are reduced to a determinate set 
by representing the distribution functions as sums of ‘modified Maxwellian 
functions based on various characteristic temperatures and velocities ’. The 
particular choice of such a representation depends on the Knudsen number 
and on the nature of the microscopic boundary conditions. 

1. Introduction 
Considerable progress has been made in the study of gaseous systems whose 

behaviour is governed by the Navier-Stokes equations. These equations are, 
however, valid only in cases where departures from local thermodynamic equili- 
brium are uniformly small at all positions and times. There are many systems of 
interest that involve considerable departures from states of local thermodynamic 
equilibrium. Such systems can be treated only within the framework of a more 
general formalism than the Navier-Stokes formalism. 

Kinetic theory provides a microscopic, and therefore rather general, formula- 
tion of gas dynamics. However, very few problems of the theory can be handled 
completely and explicitly in microscopic form. Instead, we usually proceed by 
first translating a microscopically formulated problem into an ‘ approximately 
equivalent’ macroscopic (i.e. continuum) form. We then attempt to solve the 
mathematically simpler continuum problem. From a practical standpoint, the 
microscopic theory is general for just the reason that it constitutes the basis for 
generating an unlimited number of distinct types of continuum theory. In  this 
paper we shall discuss procedures for translating microscopically formulated 
boundary-value problems of gas dynamics into approximately equivalent con- 
tinuum problems. 

The microscopic state of a system is specified by molecular distribution func- 
tions, one for each species of molecule in the system. The microscopic equations 
of motion then have the form of non-linear integro-differential equations which 
can be solved only approximately, if at all. As indicated above, we usually begin 
by deriving from the kinetic equations a system of differential equations for 
a finite set of macroscopic variables. The macroscopic variables may be inter- 
preted formally as state-variables that specify the state of some continuum; the 
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differential equations are then interpreted as the equations of motion for that 
continuum. Different types of continua are distinguished one from another by 
the number of independent state-variables, by the physical significance of those 
state-variables, and by the particular form of the equations of motion. 

For any gaseous system the quantities of direct physical interest are various 
macroscopic fields such as density, flow velocity, stress, etc. These variables can 
be expressed as simple functions of low-order moments of the molecular velocity 
distributions. An approximation method may then be counted as adequate if it 
leads to an accurate prediction for the behaviour of the lower-order moments, 
even when it determines high-order moments with poor accuracy. 

When the physical interaction of gas molecules with boundaries of the system 
has been specified, we can formulate the (microscopic) boundary conditions to be 
satisfied by the distribution functions. In  the translation of a specific microscopic 
problem into an approximately equivalent continuum problem, our choice of 
a suitable continuum formalism will depend intimately on the nature of the 
microscopic boundary data, and on the values of certain dimensionless parameters 
(Knudsen number K ,  Mach number M ,  etc.) that characterize the system of 
interest. In  particular, it is important that we use a continuum formalism which 
permits an adequate (approximate) representation of the physical boundary data 
in terms of the state-variables of the theory. 

The methods to be presented in this paper will be formulated with specific 
reference to one-dimensional problems for a simple gas in the absence of external 
fields (the extension to more complex cases is quite straightforward in principle). 
The microscopic state of a system is then specified by a single distribution 
function f (v, s, t ) ,  which is a function of the velocity variables v = (el, e2, vUa), of 
a position co-ordinate x, and of the time t .  

Thenumber density n(x, t ) ,  the flow velocity q(z, t ) ,  and the kinetic temperature 
T(z,  t )  are defined by the usual relations (see Chapman & Cowling 1939) 

n = ffdv, nq = fvfdv,) 
J J 

where m is the molecular mass, k is Boltzmann's constant, and the integrations 
extend over the whole velocity space. It is convenient to introduce also a stress 
tensor t )  and a heat flux vector h(s, t )  defined by 

Pi,j = W i  - @, - q,) f dv (i,j = 1,2931, (1.2) 

(1.3) h = / fm(v - q)2 (v - q) fdv. 
s 

The behaviour of the system is governed by the kinetic equation 

Sf/St denotes a non-linear functional off, whose explicit form depends on the 
model used to represent the molecular interactions, e.g. the Maxwell-Boltzmann 



Continuum equations in the dynamics of rarefied gases 525 

model, the Fokker-Planck model (for ionized gases), and various types of 
‘statistical model ’. In  the Maxwell-Boltzmann model, the interaction term has 
the form of a collision integral (see Chapman & Cowling 1939): 

where g = Igl = Iw-vI, and v’, w‘ are the final velocities of txo  molecules in 
a binary collision with initial velocities v, w, with impact parameter b, and with 
orientation of the plane of the relative orbit specified by the angle B .  For concise- 
ness, the arguments x, t of the distribution functions have not been exhibited 
explicitly in the integrand of equation (2.3). Statistical models will be discussed 
in 0 12. 

2. Moments as state-variables 
Let us ignore, for the moment, any limitations that might be imposed by the 

nature of the boundary data. Multiplying the kinetic equation (1.1) in turn by 
1, v and imv2, and integrating over velocity space, we can derive five continuum 
equations* in which p = nrn, q and T appear as independent state-variables (see 

-+ql -+-  p1,j2+- = 0. 
aT at aT ax 3nk [ a h l ~  ax 1 

These equations are formally independent of the microscopic state of the gas, 
and of the special law of force between molecules. This is a consequence of the 
conservation of mass, momentum, and energy in molecular collisions. The con- 
servation laws guarantee the elimination of all collision terms from the equations; 
in fact, the set of equations (2.1) makes maximum use of the simplifying con- 
sequences of the conservation theorems. 

The equations (2.1) do not, however, constitute a determinate set. In  addition 
to  the basic state-variables p, q and T ,  they also involve the stress tensor pi,$ and 
the heat flux vector h. To make up a determinate set of continuum equations from 
the equations (2.1), we may proceed in either of two main ways. 

On the one hand, we may elect to regard the quantitiespi,$ and h as dependent 
state-variables, and therefore expressible in terms of the basic state-variables p, 
q, and T (and possibly also in terms of space gradients of p, q, T). For cases in 
which departures from local thermodynamic equilibrium are uniformly small, the 
above equations can now be reduced to the Navier-Stokes equations by applying 
the Chapman-Enskog procedure to the kinetic equations. This derivation supplies 
not only the form of the Navier-Stokes equations, but also explicit formulae for 
the coefFicients of viscosity, heat conduction, etc., as functionals of the laws of 

* The same set of equations is valid also for composite systems and for molecules with 
internal degrees of freedom, provided q, T, p*,, and h are defined appropriately. 
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force between molecules. For cases in which appreciable departures from looal 
thermodynamic equilibrium do occur, we might try to relate the variablesp$,, and 
h to the basic state-variables in an entirely different manner. We would thereby 
obtain continua specified by exactly the same basic state-variables as the ‘Navier- 
Stokes continuum ’, but obeying different equations of motion; such continua 
have, of course, to be counted as different from the Navier-Stokes continuum. 

On the other hand, we may elect to assign to the stress components p$, j, and 
possibly also to some velocity moments of still higher order, the status of basic 
state-variables on the same footing as p, q, and T. We can construct formal 
equations of motion for the new basic state-variables by multiplying through the 
kinetic equations with suitable functions of velocity, and then integrating over 
velocity space. The equations obtained in this way are again not a determinate 
set, and for two remons. 

In  the first plwe, the new equations contain velocity moments which are not 
themselves basic state-variables, and which have therefore ultimately to be 
expressed as functions of the basic variables. In the second place, the equations 
contain non-vanishing moments of the collision integrals. These collision moments 
cannot be eliminated by invoking the conservation theorems, since those 
theorems have already been ‘used up’ in eliminating collision moments from 
equations (2.1). All the non-vanishing collision moments must ultimately also be 
expressed in terms of the basic state-variables. 

Continuum theories of the above type are capable of representing the behaviour 
of gases which depart considerably from local thermodynamic equilibrium, pro- 
vided only that the distribution functions a t  the system boundaries are not 
‘seriously’ singular on surfaces in velocity space. This condition is usually satis- 
fied in systems with very small Knudsen number. 

In  other cases, however, the distribution functions at the boundaries will 
generally be discontinuous on a plane in velocity space, e.g. when gas molecules 
that impinge on a wall are ‘processed ’ by the wall before being returned to thegas. 
It is then necessary to use a continuum formalism that is adapted to the form of 
the microscopic boundary conditions (Krook 1956 a, b) .  An appropriate formalism 
of this kind can be based on the use of half-space velocity moments a,s state- 
variables instead of complete moments. 

For systems with small Knudsen number in which departures from local 
thermodynamic equilibrium are uniformly small, we would of course use the 
Navier-Stokes equations. In  this paper, however, we shall be concerned primarily 
with problems in which the distribution functions exhibit steep gradients (or 
discontinuities), in the interior of the gas, or at boundaries, or both. (For cmes in 
which linearization of the collision terms is permissible, the theory admits 
considerable simplification.) 

3. Use of approximating forms 
In  any scheme for constructing a determinate set of macroscopic equations 

from the kinetic equation, an essential ingredient is the assignment of a specific 
form to the distribution functionfin its dependence on certain of the independent 
variables v, x, and t .  This form contains arbitrary parameters that are treated as 
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unspecified functions of the remaining independent variables. In  the Chapman- 
Enskog method, the arbitrary parameters appear as functions of the velocity v. 
In  Grad’s method (Grad 1949), and also in the method of this paper, the unspeci- 
fied parameters are interpreted as functions of position and time. An approximate 
solution of the problem is then known when the parameters have been determined 
as functions of x and t. In  practice, however, it  is generally more convenient to 
select particular moments of the velocity distributions to serve as state-variables, 
and to construct equations of motion for those moments. 

We have noted that the formal properties of the distribution function depend 
markedly on the values of various dimensionless parameters that characterize the 
system. Of special importance for our consideration is the Knudsen number 
K = I/ 1x2 - xll, where I is some typical value of the molecular mean free path, and 
x = xl, x = x2 are the boundaries of the system. For systems with boundaries at 
infinity (and sometimes also for systems with x1 and x2 finite), R has to be replaced 
(or supplemented) by a ‘local Knudsen number ’ which is a measure of the steep- 
ness of local gradients in the gas. The most general type of approximating func- 
tions contemplated in this paper may reasonably be expected to provide repre- 
sentations that are, in a sense, uniformly valid over the whole range of Knudsen 
number, or of local Knudsen number. 

In  an approximation of order N ,  the distribution function is approximated by 
a function that involves N arbitrary parameters. The corresponding continuum 
equations are then a set of N differential equations for N state-variables (i.e. 
moments). The derivation of the continuum equations is of course only an 
intermediate step in the solution of any problem. These equations have still to be 
solved subject to appropriate initial and boundary conditions. The solution will 
be feasible only when the order of approximation N is not too large. It is therefore 
desirable that the approximating forms be chosen so as to yield optimum 
accuracy for given order N .  

In  this paper, the approximating functions will have the form of sums of 
‘ modified Maxwellian functions based on various characteristic velocities and 
temperatures ’. As we shall see, such representations can be motivated on physical 
grounds, and have the advantage that all (or most) of the mathematical manipula- 
tions involved in the construction of continuum equations can often be carried out 
analytically. 

4. A d a r y  functions 
The kinetic equation (1.4) has to be solved subject to conditions imposed a t  the 

boundaries of the system at x = z1 and x = x, (zl < x2). In  general, the physical 
interaction of gas molecules with a solid wall introduces a fundamental distinction 
between the velocity distributions of incoming and outgoing molecules at the wall. 
In  fact, the distribution function is then singular on the plane w1 = 0 in velocity 
space. 

It is advantageous to recognize the singularity explicitly in the mathematical 
formalism by using different approximating forms for f in the two regions w1 > 0 
and w1 < 0 of v-space. To this end we introduce two auxiliary functions f+(v, x, t )  
and f-(v, x, t )  defined only in the half-spaces w1 > 0 and w1 < 0 respectively (see 
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Krook 1955a, b ;  Gross, Jackson & Ziering 1957). Within their respective domains 
of definition, the values off+ and f- are specified by the relation 

Depending on the type of physical interaction at the walls, the mathematical 
boundary conditions may take the form of a specification of f+(v, xl, t )  and 
f-(v, x,, t ) ,  or a specification of relations betweenf, andf- at x = x1 and x = x2, or 
etc. 

It is sometimes convenient, especially when the velocity distribution exhibits 
special symmetry, to refer velocity space to co-ordinates other than rectangular 
Cartesian. Thus, for the case of axial symmetry, we may use polar co-ordinates 
(v, 8, $), and write f = f (v, p, x, t )  where p = cos 8. The function f+(v,,u, z, t )  is 
defined only for 0 < p < 1 and f-(v:p, x, t )  is defined only for - 1 < p c 0, so that 

For systems with boundaries at finite values of x1 and x2, we shall generally 
have to use different representations forf, andf-. In  an approximation of order 
N = N+ + NJ+ andf- are approximated by functional forms that involve N+ and 
N- arbitrary parameters, respectively. 

In  certain limiting situations (e.g. Knudsen number K 4 l), it  is sufficient to 
use a single approximating form for the complete distributionf. For systems with 
boundaries at infinity, f is generally not singular on the plane w1 = 0, and a 
unified representation off+ and f- is again admissible though not necessarily 
expedient. 

5. Moments 

and &[$I, defined as functions of z and t by the relations 
With any function of velocity $(v), we associate functionals &+[$I, &-[$I 

&*[$I J $fdv = J $f& dv, (5.1 a, b)  

- 4 7 5 1  = j$fdv = &+[$I +&-[$I, ( 5 . 1 ~ )  

where I+ and 1- denote integration over the velocity half-spaces wl > 0 and 

v1 < 0, respectively. The functions $ to be considered here generally have the form 
of a product of powers of the velocity components, (e.g. w;"' vp wp or vpp) ,  and 
sometimes the form' of a sum of such terms (e.g. vf v2 = +vi + v:)). The 
functionals (5.1) will be termed 'moments' of the distribution function; &*[$I 
are half-space moments, and &[$I is a complete moment. Our continuum 
theories will involve either half-space moments or complete moments as basic 
state-variables. 

f f 
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With the function $(v) we also associate half-space interaction moments 
8+[$], 9'-[$], and a complete interaction moment S[$], defined as functions of 
x and t by the relations 

9*[$1= j $-p, Sf (5.2a, 6) 

9[$1 = $-dv = 8+[$] + 931. ( 5 . 2 ~ )  

f 

1: 
From the definitions (1.1) and (5.1), it then follows that 

n = A[1]  = .A+[l] +A-[l], (5.3) 

nqi = A[ZJi] = A+[Wi] +A-[vi ]  (i = 1,2 ,3) ,  (5.4) 

(5 .5 )  
3kT 

n- m = A [ ( V - ~ ) ~ ]  = ~ + [ ( ~ - q ) ~ ] + A - [ ( v - q q ) l .  

The conservation laws for particle number, momentum and energy in molecular 
interactions imply the relations 

8[1]  = 0, 9 [ V i ]  = 0, 8[v2] = 0. (5.6) 

6. Moment equations 
Let $l(v), $2(v), . . ., &(v) be any particular set of N simple functions, i.e. 

products of powers of velocity components or sums of such products. Multiplying 
the kinetic equation (1.4) by $,(v) and integrating (a) over the half-space vl > 0, 
(6) over the half-space w1 < 0, we obtain two sets of half-space moment equations: 

( 6 . 1 ~ )  

,d - [V194]  = S-[$,] ( j  = 1 , 2  ... N ) .  (6.lb) 

Integration over the whole velocity space, instead of the half-spaces, yields 
a single set of complete-moment equations 

a a 
at ax + 1 3  

a a 
- at JU$jl+ 

-A?+[$,]+-& [V 4.1 = 8+[$j] ( j =  1, 2 . . .  N), 

( 6 . 1 ~ )  

Considering for the present only the 2 N  half-moment equations (6.1 a, b ) ,  we 
next define a set of 2 N  basic (independent) state-variables M$+)(x, t ) ,  MC,-)(x, t ) ,  
(j = 1,2  ... N ) ,  as the half-space moments that correspond to N particular simple 
functions $l(v), ..., $N(v), i.e. 

Mi+) 3 A+[$,], Mi-) = ( j  = 1 , 2  ... N). (6.2a, 6 )  

Moments &*[@I that are not basic state-variables will be termed 'extraneous 
moments'. Our aim will be to construct, from the 2N formal equations (6.la, b) ,  
a determinate set of equations of motion for the 2 N  independent state-variables 

The choice of N functions $j in the equations (6. l), and of N functions $, for the 
definitions (6.2), is largely arbitrary. In  practice, the functions $, are usually 

a a 
- A [ $ , l + ~ A c v l $ j l  at = 9[$,1 (j = 1 , 2 . . . N )  

M$+). 

34 Fluid Mech. 6 
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selected to comprise simple functions of lowest degree. It is then convenient to 
select the N functions $, in such a way that, in the formal equations (6.la,  b) ,  as 
many moments as possible are basic state-variables. For time-independent 
problems, the identification $, = wl$f (j = 1,2. .  .N) ,  would result in the exclusive 
occurrence of basic state-variables on the left-hand sides of equations (6.1 a,  b) .  
However, certain moments will appear naturally in our approximating formulae, 
through definitions of characteristic local velocities and temperatures (see p9). It 
is then convenient to include those moments among the basic state-variables. 

I n  general the formal equations will involve some extraneous moments. 
Furthermore (except with the simpler types of statistical model), the interaction 
moments 8, [$,I have purely formal significance, and are not directly expressible 
in terms of moments off. In  order to reduce the basic equations (6.1 a, b )  to a deter- 
minate system, we have to express all extraneous moments and the 2 N  interaction 
moments in terms of the basic state-variables. 

Similar considerations apply to the N complete-moment equations (6.1 c), with 
basic state-variables d f ( z ,  t )  defined by the relations 

( 6 . 2 ~ )  Mf = 44 = M$+’+M$-’ (j = 1 , 2  ... N ) .  

7. Reduction procedure 
The 2 N  formal equations (6.1 a, b)  can be reduced to a determinate set by 

representingf, andf- as specific functions of v, involving 2 N  parameters A\+) and 
A$-)(j = 1,2 .  ..iV); theparametersareinterpretedasunknownfunctionsofxandt. 
The more general types of approximating function to be oonsidered here will 
depend on the state-variables ML*) as well as on the parameters AL*), thus 

f+(v, 2, t )  = g+(v; 4+), ML+’, wl-)), (7 . la)  

f-(v, x, t) = gJv; Ai-), Mi+’, HL-)), (7.lb) 

Using the approximations (7. l), we may evaluate the moments Mi*) = &?,[$J 

M(+)  = a(+) d i  A +); HL+), Mj-)) (7.2a) 

M(-)  f = a(-) f ( Ad-); .” Mi+), Mi-)) (j = 1 , 2  ... N ) ,  (7.2b) 

where the G$+) and G$-) are known functions of their arguments. For the approxi- 
mating functions contemplated in this paper, G$*) will be linear functions of the 
parameters AL*), with coefficients that may depend on the state-variables. 

Solving the two sets of (linear) equations (7.2), we obtain formulae for the 
parameters A$*) as functions of the state-variables: 

A(+’ f = H$+)(Mf+), Hi-)), (7.3a) 

A\-’ = H(-)  f (  M(+), k Mi-)),  (7.3b) 

where the Hi*) are again known functions of their arguments. In  the important 
special case that the functions (7.1 a, b )  do not involve the state-variables 
explicitly, the functions Hi+) and HS-1 are simply linear functions of the state- 
variables ML+) and ML-), respectively. 

where g+ and g- are prescribed functions of the indicated arguments. 

in the form (j = 1,2. . .N) ,  
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Substitution of the formulae (7.3) for A$*) on the right-hand sides of equations 
(7.1) now provides representations for f* that contain only the stab-variables, and 
not the parameters thus: 

f* = h*(v; a+’, ML-9, (7.4a, b )  

where h, and h- are known functions of their arguments. Any functional8 off, 
and f- can now be evaluated, at least in principle, as explicit functions of the 2N 
state-variables Mi*). In  particular, extraneous moments A* [$I, and interaction 
moments P*[+J, can thus be determined as functionsof thestate-variables. When 
these functions are substituted in the formal equations (6 . la ,  b) ,  we obtain 
a determinate set of equations of motion for the state-variables. 

An analogous process with complete moments M5 as state-variables, leads from 
the formal equations ( 6 . 1 ~ )  to a determinate set of N equations for the M5. 

The macroscopic boundary conditions satisfied by the state-variables Mi*) are 
readily derived from the microscopic boundary conditions on f+ and f-. If, for 
example, the boundary values f+(v, xl) andf-(v, z2) are specified, direct integra- 
tion provides the boundary values MC,t)(zl) and M$-)(z2) for the state-variable. 

The formulae for the interaction moments P*[q5,] as functions of the state- 
variables involve coefficients that appear in the form of multiple integrals. Since 
the derivation of continuum equations is merely a preliminary step in the solution 
of 8 problem of gas dynamics, the usefulness of the procedure outlined above will 
depend crucially on the extent to which these multiple integrals can be evaluated 
in closed form. (The elimination of extraneous moments in closed form presents 
no difficulty.) This circumstance places severe restrictions on the types of 
approximating forms that can reasonably be used to represent the velocity 
distributions. Sums of modified Maxwellian functions provide satisfactory 
representations from this point of view, especially when used in conjunction with 
statistical models. 

8. Modified Maxwellian functions 
The normalized Maxwell distribution function corresponding to average 

velocity Q and temperature 0 = m d / k  will be denoted by Y (v; Q,  0) or @(v; Q,  a) : 

4l 
Y(v; Q ,  0) = (z) exp [-m(~-Q)~/2k@] 

2nk0 

= @(v; Q , a )  (2:E2)’ex~ - [- ( V - Q ) ~ / ~ ~ ~ I .  (8.1) 

A function P(v; Q , a )  will be termed a ‘modified Maxwellian function 
( M M  function), based on (Q, 0) or on (Q, a)’, when it has the form 

where P represents a polynomial in the components of via, with coefficients that 
may be functions of z and t .  The velocity Q ,  and the temperature 0 or associated 
speed a = (kO/m)*, may be prescribed constants or they may be functions of the 
basic state-variables. The modifying polynomial P in the formula (8.2) represents 
a distortion of the basic Maxwellian distribution Y(v;  Q,  0). 

34-2 



532 Max Krook 

9. Characteristic velocities and temperatures 
For any particular system, we can d e h e  a number of characteristic macro- 

scopic velocities Vh and associated temperatures Oh ( A  = 1,2.  .A). Among such 
velocity-temperature pairs, we note in particular the following: 

(a) Constant pairs (Q1, TI) and (Q,, T,) which generally appear in the specifica- 
tion of microscopic boundary conditions at x = x1 and x = x,,respectively. 

( b )  The pair (q, T )  consisting of the local macroscopic velocity q(x, t )  and 
kinetic temperature T(x,  t ) .  

(c) Two pairs (q, T,) and (q, T-)  where T+(x, t )  and T!(x,  t )  are local kinetic 
temperatures associated with the half-space velocity distributions v1 > 0 and 
v1 c 0, respectively, thus 

(9 . la ,  b)  

(d) Two pairs (q+, T ; )  and (q-, TL) which provide a ‘purer’ characterization 
than (c) for the half-space velocity distributions. The velocities qk(x, t )  and 
temperatures T i  (2, t )  are defined by the relations 

(9.2a, b )  

(9.3a, b)  

We note that the velocities and temperatures of (b ) ,  ( c )  and (d )  are all expressible 
directly in terms of complete moments or half-space moments of the velocity 
distributions. A different type of characteristic local velocity and temperature 
will be introduced in 5 11. 

Instead of the velocity-temperature pairs (Vh, Oh),  it is often convenient to use 
the corresponding velocity-speed pairs (Vh, an) with 

a, = (k@A/m). (9.4) 

10. Approximating functions 
The approximating functions that we propose to use, in conjunction with the 

procedure outlined in $ 7 ,  have the general form of sums of modified Maxwellian 
functions based on the characteristic velocity-temperature pairs (V,, 0,) or asso- 
ciated velocity-speed pairs (Vh, ah) ( A  = 1,2.  .A). We thus assign to f+ and f- or to 
f, the general approximate representations 

(10.1 a, b )  

(1O.lc) 

The modifying polynomials P’n+), fi-) and PA contain Ni+), NL-) and NA terms, 
respectively, with coefficients that are regarded as unknown functions of x and t .  
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The approximation provided by the formulae (10.1 a, b)  is of order x(iVi+) + iVi-)), 
and that provided by (10.1 c) is of order x Nh. 

In  practice, of course, we would not generally include in the sums 
(10.1) components corresponding to all available velocity-temperature pairs 
(VA, 0,) ( A  = 1,Z.. .s). In  most cases, physical considerations suggest that certain 
components may reasonably be omitted from the representations. Some argu- 
ments to justify the representation of distribution functions in terms of M M  
functions will be given in $ 14. 

We have already noted the desirability of using representations that permit the 
expression of interaction moments, in sufficiently simple form, as functions of the 
basic state-variables. This requirement is most stringent when the interaction 
term Sf/& has the Maxwell-Boltzmann form (1.5). Complete interaction moments 
9[75,] can generally be reduced in a straightforward manner for representations of 
the form (10.1 c). The reduction of the half-space moments P* [$,I with approxi- 
mating forms (10.1 a, b )  is much more troublesome when Sf/St has the Maxwell- 
Boltzmann form. 

The reduction of the interaction moments is simpler when the interaction terms 
have the Fokker-Planck form, as for ionized gases (see Rosenbluth, MacDonald 
& Judd, 1957). For the class of ‘statistical models’ discussed in $11, the 
reduction of the interaction moments 9[75,], 9*[4] can usually be effected 
without difficulty. 

The use of approximating forms (8.5a, b, c) may be regarded as constituting 
a natural generalization of Mott-Smith‘s method of solution of the Boltzmann 
equation for a stationary plane shock wave in a simple gas (Mott-Smith 1951). 
Mott-Smith represents the distribution function f as a sum of two (unmodified) 
Maxwellian functions 

h 

h 

f (v ,4  = 44w; Qli, T J + B ( 4 W v ; Q , i ,  m, (10.2) 

where (Qli, TI) and (Qzi, T,) are the (constant) velocity-temperature pairs that 
correspond to the equilibrium conditions at x = - co and x = + co, respectively. 
The application of the generalized approximations for this problem will be 
discussed in $ 15. 

From another point of view, the approximating forms (10.1 a, b, c) may also be 
regarded as providing a generalization of Grad’s method which is based on 
a representation off as a single M M  function based on the local velocity and 
temperature, i.e. on (q, T). 

11. Collisional temperatures 
The velocities q, q, and temperatures T, T&, T; definedin $ 9, serve to charac- 

terize the local velocity distributions f and f+. We may introduce another type of 
characteristic velocity Q,(z, t )  and temperature E(z, t) to characterize the velocity 
distribution of those molecules that have suffered collisions locally. 

Let cr(v, 2, t )  denote the local collision frequency for molecules of velocity v. In  
the Maxwell-Boltzmann model (for example), we would have 

g ( v , z , t )  = j / J f ( w , x , t )  Iv- wI b d b d e d w .  (11.1) 
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A possible, but not unique, definition of Q,(z, t )  and q(z, t )  is contained in the 
following five equations: 

(A number density v ( z ,  t )  is also defined automatically by these equations.) 
The basis for the definitions (11.2) is provided by the property that those 

molecules which have suffered collision at z will, after collision, have an approxi- 
mately Maxwellian velocity distribution corresponding to an average velocity 
and a temperature determined by the total momentum and energy of the colliding 
molecules. Since the collision frequency v generally depends on v, the ‘ collisional 
velocity ’ Qc(z, t )  and ‘ collisional temperature ’ <(z, t )  will differ from the local 
velocity q(z, t )  and local kinetic temperature T(z ,  t )  of the gas. 

12. Interaction models 
The formal complexity of the Maxwell-Boltzmann collision integrals is 

a consequence of the fact that they take into account the detailed geometry of all 
individual kinds of binary collision. In  the Fokker-Planck model (for ionized 
gases), the collision geometry is treated statistically to a certain extent. 

I n  the class of ‘statistical’ models, the velocity distribution of those molecules 
that have locally suffered a collision is related purely statistically to their pre- 
collision velocity distribution. Two characteristic features of these models are: 
(a)  the formal simplicity of their interaction terms as compared to those of the 
Maxwell-Boltzmann and Fokker-Planck models, and (b )  their flexibility in per- 
mitting a representation of many detailed aspects of molecular interactions. 
A general account of statistical models will be published elsewhere. 

In  one of the simpler types of statistical model, the interaction term is assumed 

(12.1) 

where the collision frequency g(v, 2, t )  may be prescribed, or may be a functional 
off as, for example, in equation (1 1.1). The macroscopic variables v(z, t), Q(z, t )  
and F(z ,  t )  are determined uniquely by the conditions that particle-number, 
momentum, and energy be conserved in molecular interactions. The defining 
relations for Y ,  Q and 9- are then just the five equations (11.2). 

For the special case that CT = n. K(X, t )  is independent of v, the interaction 
term (12.1) is particularly simple. Here v = n, Q = q and Y = T ,  where n, q, T 
are, respectively, the local number density, average velocity, and kinetic 
temperature (see Bhatnagar, Gross & Krook, 1954). We then have 

- Sf = -nKf +n2KY(v; q, T ) .  (12.2) 6t 

We note that, with the model (12.2), the interaction moments are obtained 
directly in terms of moments off. 
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Apart from its great intrinsic simplicity, this constant collision-time model is 
of special formal interest for the reason that numerically exact solutions can be 
obtained without excessive difficulty for a number of one-dimensional boundary- 
value problems (Krook 19553). Some insight may then be gained into the 
accuracy of the present and other approximation methods by comparing approxi- 
mate solutions with the exact solutions for the same problem. The results of such 
a comparison in the case of Couette flow with boundary walls a6 different tem- 
peratures, and for various values of Mach numbers, Knudsen number and ratio of 
wall temperatures, will be reported as soon as exact solutions become available 
from calculations now in progress on an IBM 704 computer. 

13. Integral equations 

can be written in the general form 
For one-dimensional, time-independent problems, the kinetic equation (1.5) 

v1 = a(v, 2) { - f (v, x) + &(v, x)}, (13.1) 

where cr and a& are prescribed functionals off. The function ~ ( v ,  x) may be 
interpreted formally as a ‘ (collisional) absorption coefficient ’ for molecules of 
velocity vat x. The function a(v, x) &(v, x) may then be interpreted as the ‘rate of 
generation ’ of molecules of velocity v, by collisions a t  x. 

Any boundary-value problem for the equation (13.1) is readily transformable 
to an integral-equation problem. To this end, we define a function 

h(v, x) = r (v ,  x’) ax’ 1: (13.2) 

which will, in general, be a functional off. Equation (13.1) may then be written 
in the form: 

(13.3) 

Integrating equation (13.3) over (xl, x) for vl > 0, and over (2, x2) for v1 c 0, we 

a 1 
- {f exp P ( V ,  41)  = - a@, 4 m ,  4 exp rw, 41. ax V1 

obtain the non-linear integral equations: 

f+W, 4 = f+(v, XI) exp [ - h(v, x)/v11 

+ s” b(v, x) exp [ - {A(v, x) - h(v, x’)}/vl] dh’, ( 1 3 . 4 ~ )  
Vl 2, 

f - (v ,4  =f-(V,%)exP [-{~(v,x,)-h(v,~))/Iv,ll 

+ i / r B ( v , x ‘ ) e x p  [ - {h (v , z ’ ) -h (v , z ) } /~v ,~ ]dh‘ ,  (13.43) 

where we have written dh’ = a(v, x’) dx’. The form of these equations is instructive 
when considered in connexion with the approximation procedures presented in 
this paper. 

We note first that, for a fixed x, the emission function a(v, x) b(v, x) is the 
velocity distribution (after collision) of just those molecules that have suffered 
collision at x. On general grounds, we may expect &(v, x) to be approximately 

I V l l  
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Maxwellian in v; the average velocity and the temperature appropriate to b(v, z) 
are the collisional velocity Qc(z) and the collisional temperature %(z) defined in 
5 11. Further, thefunction[h(v,x)-h(v,x')]/lv,l isthenumberofmeanfreepaths 
between planes perpendicular to i at z and z', for molecules of velocity v. 

Equations (13.4) show that, in general, each of f+(v,z) and f-(v,z) can be 
regarded as a superposition of two essentially different types of distribution: 

A .  A partially-attenuated boundary distribution represented by the first term 
on the right-hand side of each equation (13.4). The degree of attenuation depends 
on the position of z relative to the boundary, and depends on the magnitude and 
direction of the molecular velocity v. 
B. A more complex distribution represented by the second term on the right- 

hand sides of equations (13.4), and made up of weighted contributions from the 
collisional emission of v-molecules at  all points x' < z forf+(v, a), and at  all points 
x' > x for f-(v, x). In this component, the emission u&'(v, z') at 2' is weighted by 
the negative exponential of the number of mean free paths of a v-molecule 
between x' and z. 

In  subsequent sections, we will refer to these two types of partial distribution 
as component A and component B, respectively. 

One negative conclusion can be drawn immediately from the structure of 
equations (13.4) and, in particular, from the structure of the terms corresponding 
to component B: any representation of f+(v,z) (or of f-(v,z)), as a modified 
Maxwellian function based on a silzgie velocity-temperature pair, is liable to have 
poor accuracy except in certain special limiting cases. 

Proceeding rather heuristically, we could approximate the component B by 
a sum of M M  functions based on the collisional velocity-temperature pairs 
(Qc(zi) ,%(xi))  at a number of points xi,xk ... in the interval (xl,zz). Such an 
approximation procedure would itself be rather formidable, and we would of 
course prefer to use ZocaZ velocity-temperature pairs for the field point z rather 
than pairs for a sequence of source-points xi. By defining a sufficiently wide 
variety of characteristic local velocity-temperature pairs, and by using M M  func- 
tions based on such local pairs, we may hope to mimic the representation provided 
by M M  functions based on collisional pairs in the above way. This argument can 
in no way be regarded as justifying the approximation procedures of the previous 
sections; it serves only to lend some plausibility to those procedures. 

In  the subsequent sections of this paper, we shall discuss in a formal way two 
particular time-independent boundary-value problems : (a) a problem of non- 
linear heat conduction, and (b)  the problem of shock-wave structure. 

14. Non-linear heat conduction 
We consider a system composed of a simple gas in a steady state between 

parallel plates z = z1 and x = 2, (z2 > zl). The plates are maintained at  constant 
temperatures Tl and T2, respectively (TI > T2). We shall suppose that molecules 
which strike a wall are adsorbed and are subsequently re-emitted into the gas with 
a Maxwellian distribution appropriate to the wall temperature. 

The boundary conditions then have the form 

f+W, Zl) = a1Wv; 0, Tl), f-(v, 2 2 )  = azY(v; O,T2), (14.1 a, b )  
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where at most one of the positive constants a,, a, may be specified arbitrarily. In  
the integral equations (13.4a, b )  we have now to substitute the formulae (14.1 a, b )  
for f+(v, z,) andf-(v, x,). (For the simplest statistical models, the exact numerical 
solution of these equations is then feasible (Krook 1955b).)  

The system is characterized by two dimensionless ratios, the Knudsen number 
K and the temperature ratio of the plates, r = T2/Tl. We shall suppose that r is 
appreciably less than unity, so that the gradients in the gas are steep, unless 
K < 1. The Knudsen number can be defined as the reciprocal of some average 
value of the function h(v,i, z)/lvll. 

Since the velocity distribution has axial symmetry about a direction parallel to 
i, we may refer velocity space to the co-ordinates (v,,u, q5). The distribution 
functions f* (v, p, x) could be represented generally by a sum of M M  functions 
based on T,, T,, and on an extensive set of local characteristic velocity-tempera- 
ture pairs. In  the interests of mathematical tractability, we would of course 
economize as far as possible in the number of M M  functions to be used in a repre- 
sentation off,. This would generally require the use of different kinds of approxi- 
mation in different ranges of Knudsen number. 

To discuss the formal dependence of the velocity distribution on the value of the 
Knudsen number, we subdivide the range ( 0 , ~ )  of K roughly into five 
subintervals : 

(I) K <  1; 

(111) K - 1; 

(V) K s 1. 

(11) K an order of magnitude less than unity, say K w 0.2; 

(IV) K an order of magnitude greater than unity, say K w 5 ;  

Only in ranges I and V can we make a reasonably unambiguous choice of approxi- 
mate representations for f*. We shall discuss the five ranges of K separately, and 
shall indicate possible, but by no means unique, approximations for each range. 

Range I .  ( K <  1) 

The distance x2 - x, comprises many mean free paths. Equations (13.4) then 
show that the wall distributions (14.1) are completely attenuated in compara- 
tively thin layers in the immediate vicinity of the respective plates. Further, the 
component B for the point x is made up of (attenuated) collisional emissions at 
points 2’ for which b(v, x‘) differs only slightly from &(v, x). The local velocity 
distribution at x thus differs only slightly from a Maxwellian velocity distribution 
for a single velocity and temperature, which may therefore be taken to be the 
local velocity q(x), and the local kinetic temperature T(z). Moreover, the velocity 
distribution f(v, x) at a boundary has only a slight discontinuity on the plane 
vl = 0. In  this case, departures from local thermodynamic equilibrium are every- 
where small, and so the problem for K < 1 can be treated by the Navier-Stokes 
formalism. 

Range V .  (K & 1) 

The distance (x, - xl) is a very small fraction of a mean free path. Nearly all the 
molecules emitted by a plate (except those emitted practically tangentially) 
strike the opposite plate before they can collide with another gaa molecule. I n  the 
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formulae (13.4a, b )  for f,(v, x), component A predominates everywhere and 
component B is comparatively small everywhere. 

In  this range, the primary requirement is that we should provide representa- 
tions for the non-uniformly attenuating wall distributions. We could thus use the 
approximating forms 

( 14.2 a) 

(14.2 b )  

Component B in f+ or f- would by itself be represented rather inaccurately by 
an M M  function based on Tl or T,. In  the derivation of continuum equations from 
the relations (14.2), the presence of component B gives rise to a slight modification 
of the coefficients A%; from what would be their pure component A values. 

RangeIP. (K  N 6)  

In  this case, most of the molecules emitted from a wall reach the opposite wall 
before they can collide with other gas molecules. Component A ,  i.e. the at- 
tenuating wall distribution, is still, as in range V, the dominant term in equations 
(13.4). Component B, however, is by no means negligible and should receive 
explicit recognition in our approximations for f* . 

In formula ( 1 3 . 4 ~ )  forf+(v, z), component B includes significant contributions 
from the collisional emission 8(v, 2') at all points z' in (zl, z). Similarly, com- 
ponent B inf-(v, z) includes significant contributions from the collisional emission 
at all points in (z, x,). Roughly speaking, the emission 8(v, z') at any point results 
from the interaction of two distributions with temperatures Tl and T,. We 
therefore approximate component B as a sum of M M  functions based on the 
boundary temperatures Tl and T,. We would then represent the complete distri- 
butions f* (v, z) (component A + component B)  in the form 

2 

f*(v,x) = z Wv; 0, Th) x Ag;)(z)pmv", ( 1 4 . 3 ~ )  

A$i:n+'(xi) a i a a , i L , o h , o ,  = a,8~,28m,oan,o. (14.4a, b)  

a = i  m, n 

Range I I .  (K  N 0-2) 

Most of the molecules emitted from a plate collide in the gas before they can 
strike the opposite plate. Component B of equation (13.4) thus predominates, but 
component A is by no means negligible. 

For w1 > 0, the contributions to component B off+(v, p, x) come from collisional 
emission &(v, x') at points x' < z and within about one mean free path of 2. In  
this case we may approximate f* (w, p, x) by the forms 

f* = Y(v; 0, T ( z ) )  X AfmLpmvm+Y(v; 0, T*(z)) CI l ?@pwn,  (14.5a, 6 )  

where T(x)  is the local kinetic temperature and T+(x), T-(z) are the temperatures 
associated with molecules that have wul > 0, v1 < 0, respectively. 

m, n m, n 
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We note that T+(z,) = T,, T-(x,) = Tz, so that 

A ~ , L ( z ~ )  = 0, - G , ) n ( x J  = a1amsoan,0; 

and AG)n(x,) = 0, BG~,,(x,) = a,am,,an,o* 

Range 111. (K N 1) 

In  this range, component A and component B of equation (13.4) are of com- 
parable importance. The collisional temperature T,(x) also varies appreciably 
with z between x1 and 2,. It would appear to be desirable to use sums of at least 
three M M  functions for this case, e.g. 

(or the form with T(x) instead of T,(x)). 
The types of approximation quoted above for various ranges of K are of course 

not the only, or even necessarily the best, approximating forms. When M M  
functions based on local characteristic temperatures appear in the representation, 
the resulting continuum equations are formally complex (see $15). It may 
sometimes be desirable to exploit the formal simplicity that results from the use of 
constant velocity-temperature pairs, by using only M M  functions based on the 
boundary temperatures T,, T, and on a sequence of constant temperatures 
intermediate between TI and T,. 

15. Choice of basic state-variables 
In  cases where the approximate representation of the distribution function 

involves only constant velocity-temperature pairs, the derivation of continuum 
equations is completely straightforward. The formalism is somewhat more com- 
plicated when the approximations include M M  functions based on local charac- 
teristic velocity-temperature pairs. We shall illustrate this point by considering 
the approximation (14.5) (range 11) for the heat transfer problem of the previous 
section. 

Let us define the half-space moments BtJ(x) by the equations 
. n  

(15.1) 

where t9: = kT,/m. The local temperatures T(x) ,  F+(S), T-(x) and the corre- 
sponding speeds /3(z), p+(x) ,  p-jz), are defined by the relations 

If we use the approximating forms 

(15.2) 

(15.3a, b) 
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we obtain, for the moments, the approximations 

The local speeds p ( x ) ,  /3* (2) that appear in the coefficients on the right-hand 
side of equations (15.5a,b) are themselves given in terms of the moments 
&:J(z), RL:J(z) by the relations (15.3). It is then convenient to include these four 
moments &+i and R$$i in the set of basic state-variables. The coefficients AEL, 
B$i are then non-linear in RL:J and RZJ, but are linear functions of the remaining 
basic state-variables. 

Examples of continuum equations for such cases will be given in a subsequent 
paper where the methods of this paper are used, in conjunction with statistical 
models, to discuss the problem of Couette flow with heat transfer. 

16. Structure of shock waves 
We consider a plane stationary shock wave in a simple gas. The boundary 

The number density n2 = n( + a), average velocity Q2i = q( +a), and tempera- 
ture T, = T(  + a) are determined uniquely by nl, Q1, T,, and the Mach number 
M = Ql/(5kTl/3m)).  

Since the boundaries are at infinity, the inteflal equations (13.4) reduce to the 
form 

( 1 6 . 2 4  
1 "  

f+P, 4 = - b(v, 2) exp [ - (h(v, 2) - h(v, z')}/vl] dh' ,  
V I L  

f-(v,x) = -~~~(v , z )exp[ - (h (vy~ ' ) -A(vy~)} / /v l~ ]dh ' .  1 (16.2b) 

1v11 

The Knudsen number K = 0, and the distribution functionf(v, 2) is continuous 
in v-space. However, the transition from the supersonic regime to the subsonic 
regime is practically confined to a layer whose thickness is of the order of a few 
mean free paths. In  this layer, the distribution function exhibits steep gradients 
(the local Knudsen number is of order unity). In  this case 

(16.3) 
const. x f(v, -a) as 2 --f -a, 

const. xf(v, +a) as 2 --f +a. 

The velocity distribution is axially symmetric about the direction i. We obtain 
formally simple continuum equations if we represent the complete distribution as 
the sum of MH functions based on the constant pairs (Qli, Tl) (Q,i, T,), in the 

f = C Y(v; QAi,TA) A E ~ n v ~ v 2 ~ .  (16.4) 
form 9 

h=l  m, n 
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Formally more complicated equations are obtained with the unsymmetrical 
approximation 

(16.5) 

Even with the Maxwell-Boltzmann model, the representations (15.4) and (15.5) 
permit the multiple integrals involved in the interaction moments to be evaluated 
in terms of error functions. Approximations of the form (16.4) have been used to 
analyse the structure of shock fronts in ionized gases (Krook 1959). 

If we use the simpler forms of statistical model for the molecular interactions, 
i t  is feasible to use separate representations for f+(v, x) and f-(v, x), e.g. 

f = Y(v; Qli,  T,) C A,,V;~V~~+Y(V; q, T) B , , v ~ ~ ~ .  
m, n m, n 

f+ = Y(v,Qli,T1) C AKAv;lZvzn+Y(v,q, T) 2 BZAvpzn, ( 1 6 . 6 ~ )  

f- =Y(v,Q2i,T2) A$Av~vzn+Y(v,q,T) I: B;Avpzn. (16.6b) 

The forms (16.5) and (16.6a, b )  contain a more explicit representation of the 

m, n m, n 

m, n m, 

collisional emission than does the form (16.4). 

17. Conclusion 
When the methods of this paper are used to construct continuum equations, 

the only place in which we may encounter difficulty is in the expression of the 
interaction moments as functions of the basic state-variables. This process 
generally involves the evaluation of multiple integrals with products of two 
M M  functions as integrands. 

If the law of force between molecules is given in analytic form, and iff is not 
singular on the plane v1 = 0,  these integrals can usually be evaluated explicitly, 
even when the interaction term has the Maxwell-Boltzmann form. Iff is singular 
on the plane v1 = 0, and we therefore use different representations for f+ and f-, 
the evaluation of the relevant integrals for the half-space interaction moments in 
the Maxwell-Boltzmann model is troublesome. It is for just such cases that the 
statistical models prove particularly useful; the evaluation of the half-space 
interaction moments is generally quite straightforward with these models. 

In  subsequent papers, the methods presented in this paper will be applied to 
obtain approximate solutions for the problems of shock-wave structure , and 
Couette flow with heat transfer. 
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